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Abstract

In multi-task learning (MTL), multiple related tasks
are learned jointly by sharing information across them.
Many MTL algorithms have been proposed to learn the
underlying task groups. However, those methods are lim-
ited to learn the task groups at only a single level, which
may be not sufficient to model the complex structure
among tasks in many real-world applications. In this pa-
per, we propose a Multi-Level Task Grouping (MeTaG)
method to learn the multi-level grouping structure in-
stead of only one level among tasks. Specifically, by
assuming the number of levels to be H, we decompose
the parameter matrix into a sum of H component matri-
ces, each of which is regularized with a ¢2 norm on the
pairwise difference among parameters of all the tasks to
construct level-specific task groups. For optimization, we
employ the smoothing proximal gradient method to effi-
ciently solve the objective function of the MeTaG model.
Moreover, we provide theoretical analysis to show that
under certain conditions the MeTaG model can recover
the true parameter matrix and the true task groups in each
level with high probability. We experiment our approach
on both synthetic and real-world datasets, showing com-
petitive performance over state-of-the-art MTL methods.

Introduction

Multi-task learning (MTL) (Caruana 1997) seeks to improve
the generalization performance of multiple learning tasks by
sharing common information among them. MTL has gained
its popularity among a wide range of applications including
image annotation (Fan, Gao, and Luo 2008), speech recogni-
tion (Parameswaran and Weinberger 2010), disease progres-
sion predication (Zhou et al. 2011) and so on.

Many MTL algorithms have been proposed to learn task
structure and model parameters from data simultaneously.
For example, some works aim to identify the existent of
the outlier tasks (Chen, Zhou, and Ye 2011; Gong, Ye, and
Zhang 2012), some assume that the model parameters of all
the tasks lies in a low dimensional subspace (Ando and Zhang
2005; Chen, Liu, and Ye 2010; Chen, Zhou, and Ye 2011),
some works learn the task relations (Zhang, Yeung, and Xu
2010; Zhang and Schneider 2010; Zhang and Yeung 2010;
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Zhang 2013; Zhang and Yeung 2014), and some assume
the task structure is hierarchical (Daumé III 2009; Jalali et
al. 2010; GoOrnitz et al. 2011; Lozano and Swirszcz 2012;
Zweig and Weinshall 2013). Among them, some interesting
MTL algorithms assume that the tasks form several clusters
and aim to learn the underlying task groups. For example,
Jacob et al. (2008) design a regularizer based on the k-means
clustering algorithm to directly learn the task clusters with
the number of cluster predefined, Kang et al. (2011) identify
the task groups by learning the cluster assignments based on
relaxed integer programming, Kumar and Daume III (2012)
generalize the non-overlapping cluster assignments for tasks
to overlapping ones, and Zhong and Kwok (2012) focus on
learning feature-level task groups where different features in
one task can have different task groups.

However, all the existing task grouping techniques are
limited to learn the task groups at only a single level based
on the model parameters but in real-world applications, the
structure between tasks can be so complex that the single-
level task grouping is not enough to model it. For example,
to find the cross-talks from gene expressions, the correlated
genes are often interacted with multi-level clusters as studied
in (Kim and Xing 2010; Han et al. 2014). However, we are
not aware of any work which can learn the multi-level task
clusters from data automatically.

In this paper, we want to fill this gap by learning multi-
level task groups as well as the parameters learning to model
the complex task relations. Specifically, we propose a Multi-
Level Task Grouping (MeTaG) method which decomposes
the parameter matrix (i.e., a matrix containing the model pa-
rameters of all the tasks) into a sum of H component matrices
with each component matrix corresponding to one level. In
order to learn the task groups in each level, we impose a £
norm on the pairwise difference among the column vectors
(corresponding to tasks) of each component matrix to con-
struct level-specific task groups without the need to predefine
the number of the groups. The proposed objective function is
convex but non-smooth, and the smoothing proximal gradient
method (Chen et al. 2011) is employed to seek the global op-
timum efficiently. Moreover, we provide theoretical analysis
for the proposed MeTaG method by proving a error bound be-
tween the estimation by our MeTaG method and the ground
truth. We further show that with an assumption on the noise
for the true grouping pattern, our MeTaG method can recover



the the true task groups in each level with high probability.
For empirical studies, we compare our MeTaG method with
some state-of-the-art MTL methods on both synthetic and
real datasets, and the experimental results demonstrate that
the proposed MeTaG method is competitive compared with
existing MTL methods.

Notations: Lower-case letters are used for scalars, bold-
face, lower-case letters refer to vectors, and bold-face and
capital letters are for matrices. A vector x with length m is
denoted by x € R™ and similarly a matrix X with size d x m
is represented as X € R¥*™_ For a matrix X, its jth row,
ith column, and (7, 7)th element are represented as x7, x;,
and xj; respectively. For any vector x, ||x||, represents its ¢,
norm. For any matrix X, || X/, ; and || X|| ¢ represent its ¢, ,
norm and Frobenius norm separately. (X,Y) denotes the
inner product of any matrices (or vectors) X and Y. N, rep-
resents the set of integers {1, -+ ,m}. N'(u, 0?) represents
a normal distribution with mean y and variance o2

The MeTaG Model

Suppose we have m learning tasks and the feature dimen-
sionality is d. The training data for the ith task is denoted
by (X, y:), where X; € R"*9 is the data matrix with n;
training samples stored in the rows, and y; € R™ is a vector
of class labels for the n; training samples in X;. If the values
in y; are continuous, the +th task is a regression problem
and otherwise a classification problem. Each column in X
(¢ € N,;,) corresponding to one feature is assumed to be
normalized with zero mean and unit variance:

ni ) i N 2
ek =0 3 (dh) =tweNuienn
k=1 k=1

where x,(fj) is the (k, 7)th element in matrix X;. The linear
function for the ith task is defined as y1;(x) = w} x, i € N,,,
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where an offset is assumed to be absorbed into w;. Define
W = [wy, -+, W,,] € R¥™ ag the parameter matrix.

Since we aim to learn multi-level task groups, by assuming
that there are H levels where H is a user-defined parame-
ter, we decompose the parameter matrix W into the sum of
H component matrices each of which is to learn the task
groups in a level. Specifically, the parameter matrix W is
decomposed as

H
W = th~ 2
h=1
In Eq. (2), W, = [Wh.1, , Whm] € R¥™ is the compo-

nent matrix corresponding to the hth level and wy, ; is the
parameter for the ¢th task in the hth level. Then we formulate
the objective function of the MeTaG method as

H H m
2
=X > whalls + D0 A D IwWhii — walle,
h=1 h=1

i<j

1 m 1
min — — ||y
win — ; - lly

3)

where )\ ’s are positive regularization parameters. The first
term in problem (3) measures the averaged square loss on
the training data. By denoting the second term in problem (3)
by Q(W), we observe that (W) imposes a {5 norm on the
pairwise difference among the column vectors in Wy, which
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encourages each pair of columns wy, ; and wy, ; in Wy, to be
identical. If this happens, then the ith and jth tasks belong
to a task group in the hth level. A;, controls the strength of
task grouping at the hth level, and a larger )\, is likely to
lead to smaller number of task groups in the hth level. When
Ap — 00, there will be only one task group with all identical
columns in Wy,. By assuming a descending order for the
numbers of task groups from the Hth level to the first one,
we set A\, = A\p—1/¢ for h > 2 with constant ¢ > 1.

It is worth mentioning that Q(W) differs from the fused
lasso regularizer (FLR) (Tibshirani et al. 2005) and its vari-
ant, generalized fused lasso regularizer (GFLR) (Friedman
et al. 2007). The FLR and GFLR enable to group data fea-
tures in terms of scalars, while (W) is for task grouping in
terms of column vectors. Therefore, 1(W) can be viewed
as a generalization of the FLR and GFLR. Note that solv-
ing an optimization problem regularized by Q(W) is more
challenged than that with the FLR and GFLR. With the same
reason, {2(W) differs from the feature-level task grouping
regularizer in (Zhong and Kwok 2012).

Problem (3) is not easy to solve due to the non-smoothness
of (W). In the next section, we show how to solve problem
(3) efficiently.

Optimization Procedure

Both the square loss and the regularizer Q(W) are convex
with respect to W, making problem (3) convex. Since learn-
ing all levels simultaneously involves a large number of pa-
rameters, we propose to decompose problem (3) into several
subproblems corresponding to the levels. We then develop
a bottom-up iterative scheme, an instance of the coordinate
descent method, where the subproblem corresponding to the

hthlevel in the (k+ 1)th iteration seeks for WZ“ by solving
the following problem as

A ) i
HV%/I,?; miniHyl — XiWhill2 + An ; lWh,s — Whjll2, 4)
with yl = y’L_X’L (Zh/<h WZ;’:'} + Zh”>h WZ”,?:) defined
based on the parameters of the other levels from their last
updates. The bottom-up iterative scheme is shown in Algo-
rithm 1. Since the second term in problem (4) is non-smooth,
we employ the smoothing proximal gradient (SPG) method
(Chen et al. 2011) to solve problem (4). The problem solved
by the SPG method takes the form

min f (W) +7(2), )

where f(-) is convex and Lipschitz continuous, and r(-) is
convex but non-smooth.

In order to employ the SPG method, we use f(-) and r(-)
to represent the first and the second terms in problem (4)
respectively. Then we can rewrite 7(-) as

r(Wi) =X Y [Wai = Wil = [CWi 12, (6)

i<j
m(m—1) . . .
where C € R™ 2 *™ is a sparse matrix with each row
having only two non-zero entries A, and —\;, in two cor-
responding positions. Therefore, the storage requirement of




Algorithm 1 The Bottom-Up Iterative Scheme for Problem
3).

Input: X,Y;
Output: W;
1: Initialize k =0, W9 = ... = W% = 0;
2: repeat
3: forh=1,---,Hdo
4 Solve problem (4);
5 end for
6: k:=k+1;
7: until Some convergence criterion is satisfied;

C is very small. Based on the definition of the dual norm,
r(W},) can be reformulated as

T
where A = (ay,-- -, am(m,l)/z)T is the auxiliary matrix
variable, «; is a vector of auxiliary variables corresponding
to the ith row of CW], and @ = {Al|ayll2 < 1,Vi €
Np(m—1) /2} is the domain of A. Then the smooth approxi-
mation of Eq. (7) is given by

95 (W) = max(CWJ, A) — pud(A), ®)

where d(A) = 1||A||%. According to (Chen et al. 2011),
problem (8) is convex and smooth with gradient Vg, (W) =
(A*)T'C, where A* is the optimal solution to problem
(8). The computation of A* is depicted in the following
proposition.

Proposition 1 By denoting by A* = (aj, - - ,afn(m,nm)T
the optimal solution to problem (8), for any © € Ny, _1)m /2,

we have '
ai =5 ([CWET/M) ,

where [M]® denotes the ith row of a matrix M and S(-) is
the projection operator to project vector u on the {5 ball as

®

S(u) = { Tallz

u,

flull2 > 1,
[ull2 < 1.

Instead of directly solving problem (4), we solve its
smooth approximation as

min f(Wn) = f(Wn) + g (Wh). (1
The gradient of f(Wh) w.r.t. W}, can be computed as
Vw, (W) = Vw, f(Wi) +(A)7C. (12)

By using the square loss in problem (4), the ith column of
Vw, f(W},) can be easily obtained as —2-X7'(X,wy, ; —

mn,

¥i). Moreover, it is easy to prove that f(W},) is L-Lipschitz
continuous where L can be determined by numerical ap-
proaches (Chen et al. 2011). The whole SPG algorithm
to solve problem (11) is depicted in Algorithm 2, where

problem (10) has a closed-form solution as W;LH_I)

\/7\7‘2” - %Vf(ﬁ\/‘,(f)). Let D = maxacod(A) and W}
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Algorithm 2 SPG algorithm for solving problem (11).

Input: X, Y, W, 11, h, Ap:
Output: Wy;
1: Initialize t = 0 and 70 = 1;
2: repeat
3:  Compute Vf(V/VS)) as in Eq. (12);

4:  Solve the proximal step:
W = argmin f(W,”) + (Wi, = Wi, V(W)
h
L W, — W2
+ S IWi = Wl (10)
55 T = t_%g;
6: W;LHD = W;ﬁrl) + 71;” Tt+1(WELt+1) - W;Lt));
7 t:=t+1;
8: until Some convergence criterion is satisfied;

be the optimal solution of Eq. (4). If the desired accuracy is
g, ie., \f(W;Lt)) — f(W3})] < e, according to (Chen et al.
2011), Algorithm 2 needs O(+v/2D/¢) iterations to converge.

Moreover, in our experiments, we find that Algorithm 1 needs
very few iterations to converge, making it very efficient.

Theoretical Analysis

In this section, we provide theoretical analysis for the pro-
posed MeTaG model. For notational simplicity, we assume
that the numbers of training samples for all the tasks are the
same and denote it by n. The general case that different tasks
have different numbers of training samples can be similarly
analyzed. We assume that the true relation between the data
sample and its class label is a linear function plus a Gaussian
noise, which is defined as

-\ T
yji = (xy)) Wi+ €5i,i € Ny j € Ny, (13)
where y;; is the jth element in y;, W* = [w],...,w} ]

is the true parameter matrix, €;; is a Gaussian noise, and
W* can be decomposed into the sum of H true component
matrix W7,..., W3, as W* = ZhH:1 ‘W ;. Each noise €;;
follows a normal distribution, i.e., €;; ~ N(0,0?), and all
the noises are assumed to be independent of each other. We
define f = X;w; and y; = f/ + ¢, for i € N,,,, where
€ = [€14,- -, €ni)T. Let X € R4™X™" be a block diagonal
matrix with X7 € R¥"(; € N,,) as the ith block. We
define a vectorization operator vec(-) over an arbitrary matrix

P € R™>™ asvec(P) = [pT, -+ ,pL]T where p; is the ith
column of P. Let F* = [f, ... f%] € R"*™,

For any matrix Q € R¥™ we define F(Q) =
{(i,j)ldi # q;,i € Ny,,j € Ny} and its complement
E(Q) = {(i,/)|ai = qj,i € Ny, j € Nppyi # j}asits
true column grouping pattern, where q; is the ¢th column

of Q. For any matrix Q € R?*™, since each pair (4, )
. m(m—1) . .
corresponds to one row in CQ” € R™ z — *? which is

qf - qu, with C defined in Eq. (6), the projections of the

rows in CQT on the set F(Q), denoted by (CQT)E(Q),
consist of the rows with non-zero ¢, norms in CQ7, and



similarly the projections of the rows in CQ” on set E.(Q),

denoted by (CQT)EC(Q), are the zero rows in CWZ. We
define D(Q) as the index set of distinct non-zero column
vectors in Q, i.e. for any i,j € D(Q), q; # q;. Denote

QP(Q) as the projection of the columns of Q on set D(Q).
Let D.(Q) be the complement of D(Q). Now, in order to
analyze our method, we need the following assumption.

Assumption 1 Lert W = Zthl W), be an optimal solution
of Eq. (3). For any matrix W = Ethl W, € R™>*™ and
h € Np, we define matrix Ay, as A, = Wy — Wy, and
matrix Ty, as Ty, = CWT — CWT. Let A = 327 A,
We assume that there exist positive scalar By, and scalars
0n > 1 and v, > 1 such that
T
o= iy IXTveCB):
A0 /)| A |
AR =0nl| AT Y, [Talle =Ty V2.

Assumption 1 refers to the restricted eigenvalue assumption
as introduced in (Lounici et al. 2009). Similar assumptions
are commonly used in the MTL literature, e.g., (Chen, Zhou,
and Ye 2011; Gong, Ye, and Zhang 2012). Note that 6, = 1
leads to v, = 1 and vice versa. Moreover, 8, = 1 if and only
it AP — 0 or D.(W},) = () which implies that all
tasks differ from each other. Now, we present important the-
oretical results for MeTaG model in the following theorem.

Theorem 1 Let W = ZH:1 W, be an optimal solution
of problem (3). If the regularization parameters Ay, for any

h € Ny satisfies |

20 Jmsd
m(m — 1)n d’

then under Assumption 1, the following results hold with
probability of at least 1 — exp(—1 (5 — dmlog(1 + 2))):

An

%

(14)

X vec(W) — vec(F*)||3 < m(m — 1)*ndH?, (15)
. . On(m — 1)VdH
Wi — Wi < ftm = DV (16)
Br
m — 1)%dH

ICWT — C(W)T|l12 < 22 a7

Br ’
where H = Zgzl %}’;’H). In addition, if the following
condition holds for h € Ng:
(i,9) 2dyn(m — 1)*H
> =,
2 /Bh
where [C(W;,)T] @) denotes one row in C(W;)T corre-
sponding to the pair (i, j), then with the probability of at
least 1 — exp(—3 (6 — dmlog(1 + --))), the following set
. “ (4,9) —1)?
B = {69 (own) | > DR
2 Bn
can recover the true pattern of task groups E(W7) in the
h-th level, i.e. B, = E(W3) and (Ep). = E.(W).

[cwi)] as)

min
(4,J)EE(WT,)

1Since we assume a descending order for the A, ’s from A1 to A g7, we only have
to make A g satisfy Eq. (14).
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Remark 1 Theorem 1 provides important theoretical guar-
antee for the MeTaG model. Specifically, those bounds mea-
sure how well our model can approximate the ground truth
of the component matrix W7, in each level as well as the

true parameter matrix W* = Zthl W;. Moreover, with an
assumption on the noise of the underlying grouping pattern
in the true component matrices in Eq. (18), the MeTaG model
can estimate the true grouping pattern for each level with
high probability based on Eq. (19).

Remark 2 In the robust multi-task learning (rMTL) model
(Gong, Ye, and Zhang 2012), the parameter matrix W is
decomposed into two components W1 and W, and the
estimation error bound is also derived for their model. By
setting H = 2 in our MeTaG model, the error bound in Eq.
(15) is considerably better than that of their model especially
when the feature dimension and number of tasks are large.

Related Work

Our work is related to some MTL approaches (Jalali et al.
2010; Zweig and Weinshall 2013), since they assume the task
relations can be represented by multiple hierarchies, which
in some aspect is a bit similar to the multi-level structure in
the proposed MeTaG method. However, those works do not
learn task groups, which is one of the main concerns in this

paper.

Experiments

In this section, we conduct empirical experiments on both syn-
thetic and real-world problems to study the proposed MeTaG
method. Baselines used for comparison include a wide range
of competitive MTL models: the multi-task feature learning
(MTFL) model (Liu, Ji, and Ye 2009), the dirty model (DM)
(Jalali et al. 2010), the Cascade model (Zweig and Weinshall
2013), the clustered multi-task learning (CMTL) model (Ja-
cob, Bach, and Vert 2008), the model that learns with whom
to share (Whom) (Kang, Grauman, and Sha 2011), and the
grouping and overlap MTL (GO-MTL) model (Kumar and
Daume III 2012).

Synthetic Data

We first evaluate our method on synthetic data. We simulate
a multi-task regression problem with m = 32 and d = 100.
For the ith task, each column of X; € R™*4 ig generated
from a normal distribution A/(0,L,,), where I,, isann x n
identity matrix. We assume there are three levels, i.e. H = 3.
For the first level, we assume all the tasks are in the same
group and randomly choose 20 rows of W7 corresponding to
features to be non-zero with value 0.8. In the second level, we
assume the first 16 tasks are in the same group and randomly
select 30 rows of W3 such that the sub-matrix defined by
the 30 rows and the first 16 columns is non-zero with all the
elements equal to 0.4. For the third level, we assume the 17th-
24th tasks are in one group and the 25th-32th tasks in another
group. By randomly selecting 20 rows for the 17th-24th and
25th-32th columns in W3 separately, the elements in the
selected sub-matrices are set to 0.2. Then the true parameter
matrix W* is generated by W* = W7 + W3 + W3. The



Table 1: The performance of various methods over 10 simulations on the synthetic data in terms of mean-+tstandard deviation.

Training size MTFL DM Cascade CMTL Whom GO-MTL MeTaG

50 MSE 597240295 4816+0280 6.538+£0437  3.164%0.137  2.639+0.191  2.082+0.074  1.488+0.040

TDof  32.004£0.00  32.00£0.00 32004000  32.004£0.00  32.00+£0.00  19.00+1.15  17.00+4.03

S 0.645£0.000  0.645+0.000  0.645+0.000  0.645+£0.000  0.6454+0.00  0.674+0.010  0.685:+0.024

100 MSE  347040.133  3212+0.139 321640217  253840.143  22824+0.155  1.482+0.171  1.11840.042

TDof  32.00+£0.00  32.00£0.00  32.0040.00  32.004£0.00  32.00+£0.00 26504127  11.20+4.24

S 0.645£0.000  0.64540.000  0.645+0.000  0.645+£0.000  0.64540.00  0.662+0.006  0.796-£0.060

150 MSE 262540074 2388+0.090 2.137+0.118  1.8104£0.074 224740200  1.046£0.083  0.939+0.030

TDof  30.80+1.23  32.00£0.00  32.004£0.00  32.00+£0.00  32.00£0.00 25204155  19.40+3.78

S 0.648£0.003  0.64540.000  0.645+0.000  0.645+£0.000  0.6454+0.00  0.666+0.008  0.751+£0.053
— i —— — —
| s FR |
— | =1 | 12w os —
— E=t . w 0_75} } =
— g g g20 @ 07 —
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Figure 1: Parameter matrices in synthetic data when the training
size is 150, where (a)-(d) are the true component matrices and
parameter matrix, and (e)-(j) are the estimators W from different
methods: (a) W7T; (b) W3; (¢) W3; (d) W™; (e) MTFL; (f) DM;
(g) Cascade; (h) CMTL; (i) Whom; (j) GO-MTL; (k) MeTaG.

decreasing order of the weights over levels can simulate the
gradually decreased task sharing over levels. The response
y; for the ith task is then generated as y; = X;w; + €,
where €; is a noise vector generated from N (0, 0%I,,) with
o = 2. The matrices W1, W3, W3, and W™ are depicted in
Figures 1(a)-1(d) where columns correspond to tasks, rows
represent features, and black entries denote zero elements.

We use the mean square error (MSE) to measure the per-
formance of the estimation, which is defined as MSE(W)
LS (wi — w)TXTX(w; — w}). We introduce two
metrics, degree of freedom for tasks (TDof) and metric .S, to
measure the performance of task grouping. TDof is originated
from the degree of freedom used in the feature grouping liter-
atures such as (Bondell and Reich 2008), and is defined as
the number of ‘unequal’ columns in W, where two columns
w; and w; are defined to be ‘equal’, denoted by w; ~ w,
if |[w; — w;||2 < ¢ for some threshold constant . We set
€o = 0.6 in the experiments, which shows a better discrimi-
nation. Although the task group structures in different levels
are different, there are totally three task groups in the param-
eter matrix, which is shown in Figure 1(d). Therefore the
closer the estimation of TDof is to 3, the better performance
the corresponding method achieves. The second metric S is

Zi;&j‘w’?‘ ot I(Wiw; )""Zi#j,w’.* 2w I(w;2w;)
defined as S = t L J

>

Dirjwrows 12 i) wrowr 1
where () is the indicator function. S is also motivated from
the measurement for feature grouping as introduced in (Yang
et al. 2012). The numerator in S consists of two parts, where
the first and second terms represent the recovery of ‘equal’
columns and ‘unequal’ columns separately. The denominator
is the sum of the exact number of ‘equal’ columns and the
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Figure 2: a)-(c) The performance of the MeTaG method by
varying H in the synthetic data when the training size is 150;
(d)-(f) recovered components by the MeTaG method when
H=3.

number of ‘unequal’ columns in the true parameter matrix.
Thus, S can provide a measurement for the performance
of task grouping. We vary the number of training samples
from 50 to 150 to test the sensitivity of each method. In each
experimental setting, we always generate 100 samples for
testing and another 100 samples for parameter validation to
select the hyperparameters in all the methods in comparison,
including the number of groups in CMTL and Whom, the
number of latent tasks in GO-MTL, the number of cascades
in Cascade, and the number of levels in MeTaG, whose candi-
date values are from a set {1,--- ,10}. We set ¢ = 1.2 in all
the experiments, and choose \; of the MeTaG model from
the set [107¢,1075,--- | 103].

Table 1 shows the performance of all the methods over
10 simulations. As shown in Table 1, the task grouping al-
gorithms, i.e. the CMTL, Whom, GO-MTL, and MeTaG
methods, have lower estimation errors compared with others.
Our MeTaG method has the best performance in terms of
all three performance measures. Figures 1(e)-1(k) show the

estimated W’s of all the methods in comparison when the
training size is 150. By comparing Figures 1(e)-1(k) with the
ground truth shown in Figure 1(d), the estimation learned
from our MeTaG method has better recovery result. We also
examine the performance of the MeTaG method when the
value of H varies. Figures 2(a)-2(c) shows the change of
MSE, TDof, and S of the MeTaG method by varying H. We
observe that at the beginning when H increases, the perfor-
mance improves in terms of MSE and S. When H reaches 2,
the MeTaG method reaches the best S. When H reaches 3,
which is just the true number of levels, the MeTaG method
has the best MSE. Then the performance becomes worse
for larger H’s. Moreover, Figure 2(b) shows that a lower H



Figure 3: (a)-(b) Averaged MSE vs. R in the microarray data
and traffic data respectively; (c)-(e) Performance of MeTaG
vs. H in the microarray data, traffic data and handwritten
data respectively.

leads to a lower TDof. One reason is the upper levels learned
from the MeTaG method tend to have a larger number of
small task groups due to the setting for the regularization
parameters A\;, = A\p,—1/¢ < A,_1 and so when H increases,
all the levels will contain more task groups, which leads to a
higher TDof. Moreover, we plot the three component matri-
ces learned by the MeTaG method when H = 3 in Figures
2(d)-2(f) and by comparing with the ground truth in Figures
1(a)-1(c), we can see that the recovery is good.

Microarray Data

We report results on microarray data (Wille et al. 2004). The
data is a gene expression dataset with microarray data related
to isoprenoid biosynthesis in plant organism. The tasks are
regression problems which aim to find the cross-talks from
the expression levels of 21 genes in the mevalonate pathway
(data features) to the expression levels of 18 genes in the
plastidial pathway (labels). There are 118 samples and all
the data are log-transformed and standardized to have zero
mean and unit variance. We perform 10 random splits, each
of which uses R%, (80-R)%, and 20% samples for training,
testing and validation separately with R as the training ratio.
We vary R to test the performance of the compared methods.
Figure 3(a) shows the averaged MSE over 10 random splits
under different training ratios. As shown in Figure 3(a), our
MeTaG method stably achieves the best performance under
all the settings. Moreover, Figure 3(c) shows the performance
of the MeTaG method when H changes. We can observe
that the MeTaG method achieves the best performance when
H = 2 for all training ratios, which may imply that the
number of the true task levels in the data is 2.

Traffic Data

In this experiment, a traffic data is used to compare different
methods. The samples in this dataset are vehicle counts col-
lected from 272 sensors placed in a highway traffic network,
where one half of the sensors (i.e., 136 sensors) are placed in
the exits of the highway and the others are in the entries of
the highway. The tasks here are regression problems to find
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Table 2: The averaged classification accuracy (%) of various
methods on the handwritten letter data.

cle gly m/n alg alo fit h/n
MTFL 88.74 7254 90.16 9399 9221 8095 93.39
DM 88.66 7441 89.61 9379 9239  80.57  92.78
Cascade 88.69 7496 90.04 9398 9239 82.84 9440
CMTL 8831 7422 8671 9370 9239 7991  94.18
Whom 89.34 7383 90.84 94.09 9271 83.17 94.62
GO-MTL  88.69 7254  89.19 9347 92,04 80.60 9297
MeTaG 89.39 7470 9112 9417 92.84 83.69 94.63

the casual relationships between the vehicle flows from the
entries to the exits, where each exit corresponds to one task
and the information collected in entries is considered as the
data matrix shared by all the tasks. Previous analysis (Han et
al. 2012) has shown that such casual relationships in highway
traffic networks are likely to be grouped. There are 384 sam-
ples for each sensor. Each feature in the data is normalized
to have zero mean and unit variance. The averaged MSE’s
over 10 random splits under different training ratios are re-
ported in Figure 3(b). Again, our MeTaG method performs
the best under all the training ratios. Figure 3(d) shows the
performance of MeTaG when H changes. We can see that its
performance improves when I increases. When H reaches 5
or 6, the improvement in the performance becomes small for
all the training ratios and this can be viewed as an indicator
for the true number of the levels.

Handwritten Letter Data

In the handwritten letter dataset, there are seven tasks each
of which is a binary classification problem to discriminate
between two letters: c/e, g/y, m/n, a/g, a/o, f/t and h/n. We use
the square loss for all the methods. Each data sample consists
of 128 features representing the pixel values of the hand-
written letter. For each task, there are about 1000 positive
samples and 1000 negative samples. We randomly choose
10%, 20%, and 70% of the data for training, validation and
testing. The averaged classification accuracy over 10 random
splits are shown in Table 2. The highlighted numbers stand
for the best results under the significance t-test with 95%
confidence. From Table 2, we see that the MeTaG method
shows competitive performance in all the tasks. Figure 3(e)
shows the averaged accuracy of all the seven tasks of MeTaG
when H changes. Similar to that in the traffic data, the per-
formance of the MeTaG method improves when H increases,
and becomes stable when H reaches 5 or 6.

Conclusion and Future Work

In this paper, we proposed a novel MeTaG model to learn
multi-level task groups in multi-task learning. Efficient algo-
rithms and performance bounds are derived for the MeTaG
model. Experimental results conducted on both synthetic and
real-world datasets demonstrate the effectiveness of the pro-
posed method. At current stage, the number of the levels
needs to be predefined. In future work, we are interested in
learning the number of levels from data automatically.
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